Es una manera de marcar una posición en un mapa o graficar qué tan lejos, y qué tan arriba o abajo está un punto.
Método para definir la posición de un punto por medio de su distancia perpendicular a dos o más líneas de referencia.
En geometría plana, dos líneas rectas, llamadas eje x y eje y, forman la base de un sistema de coordenadas Cartesianas en dos dimensiones. Por lo general, el eje x es horizontal y el eje y es perpendicular a él. Al punto de intersección de los dos ejes se le llama origen (O).
En tres dimensiones, se introduce un tercer eje, el eje z, para definir la altura o profundidad de un punto. En el sistema de coordenadas Cartesianas, los tres ejes se encuentran a ángulos rectos entre sí
Es un sistema de coordenadas formado por un eje en la recta, por dos ejes en el plano, tres en el espacio, mutuamente perpendiculares que se cortan en el origen. En el plano, las coordenadas cartesianas o rectangulares x e y se denominan respectivamente abscisa y ordenada.
Las coordenadas de un punto cualquiera vendrán dadas por las proyecciones del segmento entre el origen y el punto sobre cada uno de los ejes.
Sobre cada uno de los ejes se definen vectores unitarios (i y j) como aquellos paralelos a los ejes y de módulo (longitud) la unidad. En forma vectorial, la posición del punto A se define respecto del origen con las componentes del vector OA.
Sobre cada uno de los ejes se definen vectores unitarios (i y j) como aquellos paralelos a los ejes y de módulo (longitud) la unidad. En forma vectorial, la posición del punto A se define respecto del origen con las componentes del vector OA.
La posición del punto A será:
La distancia entre dos puntos cualesquiera vendrá dada por la expresión:
La distancia entre dos puntos cualesquiera vendrá dada por la expresión:
Aplicación del teorema de Pitágoras al triángulo rectángulo ABC.
Un vector cualquiera AB se definirá restando, coordenada a coordenada, las del punto de origen de las del punto de destino:
Evidentemente, el módulo del vector AB será la distancia dAB entre los puntos A y B antes calculada.